Position Paper on Genetics and Stem Cell Research
By Michael R. Jones

In seeking to find an answer to the dilemmas posed by such complex issues, one must avoid the temptation imply to be pragmatic and thus see these issues in terms of usefulness rather than morality (in other words, one must avoid the tendency to ask simply, “What is the benefit?” and must instead begin with, “Is this right or is this wrong?”). Can does not necessarily imply should and so just because someone has the ability to do something that does not necessarily mean that it is right to do it or that one ought to do it. This means that one cannot answer these questions in terms of science only, but also in terms of morality and ethics. This means that one must begin with evaluating the issue in terms of morality, and whether a thing is right to do, and only after that in terms of its benefit or usefulness.

This is not to say that there is little or no usefulness to such genetic testing and even engineering, the question is one of degree: how far is humanity permitted to go in this respect? The usefulness of genetic testing is demonstrated strongly with regard to genetic disorders that can lead to long-term health or behavior problems. Babies are tested for PKU, Down’s syndrome, cerebral palsy, and other abnormalities, so that doctors can respond to them appropriately in treatment after birth. This certainly demonstrates the benefit genetic testing can have. But one must pause before considering exactly how far genetics should be used. While one might be pleased with the eradication of PKU or Down’s syndrome, or even to remove a genetic propensity toward pedophilia, how far should one science take genetic engineering? Is it appropriate to genetically alter someone’s sexual orientation or to remove a potential toward alcoholism or sexual addiction? Questions about whether the cause of addiction and sexual identity is genetic or environmental have not been settled and so until more is known with certainty, genetic engineering must be cautious in advancing down this road or they may end up trying to fix a broken window by replacing the door.

From a Christian perspective, such genetic engineering may be viewed as little more than a removal of human responsibility. Genetic engineering also tends to lump humanity with animals and views them as unable to control their own behavior. Human experience demonstrates that many people learn to deal with addiction, rage, and sexual urges quite often and learn from those experiences to maintain control over other areas of their lives. Proponents of such extreme examples of genetic engineering fall into the same reductionism trap other branches of sciences and medicine fall into: they think a human being is little more than a bag of chemicals. If this be true then any problem in health or behavior can be fixed simply by changing the blend until it comes out right, like a chef trying to perfect a recipe. However, this is the opposite of the Bible’s view of humanity. The Scriptures view man as created in the image of God, and although tainted by sin, humanity still maintains some dignity as the only created being to bear God’s image.

It is certainly admirable to end disease and sickness and thus minimize human suffering, and the field of genetics is to be applauded in this endeavor. This is not inconsistent with the witness of Scripture since examples of physical healings are prominent in the life and ministry of Jesus and the apostles. Even in the Old Testament there are examples of healings such as Isaiah’s applying a healing to Hezekiah and Elisha’s healing of Naaman’s leprosy. That these are miraculous is irrelevant to this discussion, what is relevant is that provision was made for one with a physical defect or infirmity and the physical condition was reversed through purposeful
means and not as the result of simply waiting for the body to correct itself, a situation impossible in these cases.

Science goes too far, however, in seeking to change human beings by altering aspects of life and personality through removing one’s propensities, even if those propensities are bad, since science cannot fully say whether it will even be successful or even if it is necessary. Such changes carry moral ramifications. If tampering with someone’s desires alters them in other ways, or fails to accomplish the desired change completely does this remove the moral responsibility from that person? Also, how far would such a change affect the personhood of the one being altered? If genetic engineering is used to create a group of people who have no propensities toward such vices has science created, or is science attempting to create, a master race? Will that race then seek to oppress those who have not been genetically engineered? How does this differ except in degree from what Hitler was trying to accomplish in Nazi Germany?

Science says that the answers to these questions must be sought in the realm of ethics or theology, not science, but in admitting this limitation they are revealing a limitation that is not insignificant to their endeavor. The burden falls upon the one doing to determine whether his doing is moral or immoral. Such a shifting of the burden would not work in any other field of human endeavor and indeed would eliminate accountability altogether. Since science is not prepared to deal fully with the ramifications, genetic engineering should be limited solely to physical abnormalities until such a time when these hard questions may be given more complete answers. To drive ahead without understanding the potential ramifications is not only to confuse can and should, it also confuses advancement in technology with advancement in human ability to deal with the outcomes of that technology.

Such consideration is necessary in other areas of medical research and treatment also. One such area is the use of embryonic stem cells in treating medical problems. Undifferentiated stem cells have marvelous potential to reverse the effects of injury and disease. An undifferentiated stem cell is a human cell that has yet to develop into a specialized cell such as, for example, a skin cell, or a cell in a particular internal organ, or a blood cell. Undifferentiated stem cells are important because they can be made into any other cell in the human body. Consider, for example, that if a cell in one’s nervous system dies, the cells surrounding it will not divide to replace it. However, an undifferentiated stem cell can be made into a nervous system cell and be used to replace the dead cell. This opens up enormous potential to reverse effects of injury and disease that were formerly irreversible such as heart disease, liver disease, and spinal cord injury.\(^1\)

What is at issue on the political landscape of today is the use of embryonic stem cells, those which come from human embryos. Some come from embryos that are about to be destroyed (usually those left over from in vitro fertilization), but some seek to create embryos from which to extract stem cells. Obviously, this presents an ethical dilemma: if life begins at conception then these embryos are being used as little more than biological material and are not given the respect that human life should be given. One may concede that it is difficult to determine what is and what is not life with regard to cells; for example, can a stem cell floating loose in the amniotic fluid or an unimplanted zygote be considered a person? In the face of such uncertainty, it is best to err on the side of life, rather than to simply ignore the question because of the usefulness of the testing. Indeed, the Bible teaches the dignity and value of all human life and so one must remain on the side of life even if one is unable to answer all the technical

---

\(^1\) Raju Kunjummen, “Genetics, Stem Cell Research, and Cloning,” unpublished notes for TH 461, Contemporary Issues in Church and Society (Plymouth, MI: Michigan Theological Seminary, 2005), 4-6.
questions to the minutest detail. An embryo, though devoid of sensory experience and unable to interact in a meaningful way, is still life. To treat that life as expendable for the benefit of other human life not only strips it of its dignity, it destroys our own humanity and makes us little better than mad scientists. If there is no respect for all human life, even in forms that do not seem useful to society at large, then all humanity is stripped of dignity and even advanced civilizations may be called barbaric despite their technological advancements.

Science has barely examined the usefulness of adult stem cells such as are found in skin, the linings of nasal passages, and bone marrow. Many diseases have been successfully treated by manipulating these cells and using them in the same way embryonic stem cells are used. Umbilical cord blood is another rich source of undifferentiated stem cells that is overlooked. Science should consider these alternatives first rather than looking to embryonic stem cells simply because it is easier or because the embryos are going to be destroyed anyway.

Some of these same concerns also come into play in the discussion about cloning. Cloning is the making of a new individual from the cell of an existing individual. The clone is an identical twin of the donor; the only difference is in age. So far most reputable scientists have shown remarkable restraint in refusing to clone a human being and the only group claiming thus far to have done so was a French religious cult whose claims were immediately disregarded as false.²

The road to cloning a human being is has the same or similar obstacles discussed above, not least of which is the many embryos lost in research while perfecting the process, not to mention genetic accidents that may result, all of which leads to needless destruction of human life. With talk of the potential for replacing a child or providing spare body parts, one is also faced with questions regarding the using of potential human life for the benefit of existing human life. This also raises issues of human rights, such as, should clones have the same rights as naturally-born humans and if they are not given such rights what problems will result in the future?

Christians often ask about the status of a clone’s soul, especially regarding whether the clone would have a soul or not. Most respected theologians hold to the Traducianist view of the soul, the belief that “the human soul is received by transmission from one’s parents,”³ and accepting this view as true it would stand to reason that a clone would have a soul just as an identical twin would have a soul. This is not what is at issue. What is at issue is humanity’s taking to himself the role of creator. There is only a little stretch between taking the role of creator and claiming for oneself the right and privilege of creator, all of which belong to God alone. This mirrors the temptation of Eve in the Garden and her ultimate desire to become like God. The desire of many to claim for themselves the role of creator demonstrates that despite humanity’s numerous technological advancements, human ethics has yet to keep up with human technology.

Human beings are made in the image of God and while humanity is given much leeway under the cultural mandate to subdue the earth, the creation of life is something that is best left in the hand of God. Christians must reject the cloning of humans for any reason, be it research or reproduction, and remain committed to affirming the value and dignity of human life in spite of the supposed potential benefits of medical technology and advancement.

WORKS CITED


For Further Reading

